However, the amount of premelting is small at 1750° K. (*i.e.*, at 98% of the absolute melting point), which is confirmation of the high purity of

TABLE	II
-------	----

Heat Contents (Cal./Mole) and Entropies (Cal./Deg. Mole) above 298.16 °K.

Ta_2O_5			Nb_2	O _ð
<i>т</i> , °К.	$H_{\rm T} = H_{298.16}$	$S_{\rm T} - S_{298.16}$	$H_{\rm T} - H_{298.16}$	ST - S198.16
400	3,430	9.87	3,410	9.82
500	7,070	17.98	6,970	17.75
600	10,950	25.05	10,730	24.60
700	14,990	31.28	14,630	30.62
800	19,130	36.81	18,630	35.95
900	23,340	41.76	22,710	40.76
1000	27,630	46.29	26,860	45.13
1100	31,990	50.44	31,050	49,13
1200	36,410	54.29	35, 28 0	52.80
1300	40,880	57.86	39,550	56.22
1400	45,390	61.20	43,860	59.42
1500	49,970	64.36	48,230	62.43
1600	54,630	67.37	52,670	65.30
1700	59,380	70.25	57,190	68.04
1785		· · ·	61,090(c)	70.28
1785			85,680(1)	84.05
1800	64,220	73.01	86,550	84.53

the substance. Because of the temperature limitation of the equipment, only two measurements were obtained in the liquid range, at 1792.8 and 1809.2° K. These two measurements indicate a normal magnitude for the heat capacity of the liquid, 57.9 cal./deg. mole or 8.27 cal./deg./mean gram atom.

Table II contains smooth values of the heat contents to 1800°K. and the corresponding entropy increments, computed to match the heat contents by the method of Kelley.⁶

The following relationships, which represent the heat content values to within the average limits shown in parentheses, were derived for use by those who make thermodynamic calculations by means of equations.

 $Ta_2O_5(c)$

 $\begin{array}{rl} H_{\rm T} & - H_{298,16} &= 37.00\,T \,+\, 3.28\,\times\,10^{-8}T^2 \,+\, 5.92\,\times\,10^8 \\ T^{-1} & - 13,309; \,(0.4\%,\,298{-}1800^\circ{\rm K.}) \\ {\rm Nb_2O_6(c)} \\ H_{\rm T} & - H_{298,16} &= 36.23\,T \,+\, 2.77\,\,\times\,10^{-8}T^{-2} \,+\, 4.88\,\,\times\,\\ 10^5\,T^{-1} \,-\, 12,685; \,(0.5\%,\,298{-}1785^\circ{\rm K.}) \\ {\rm Nb_2O_5(1)} \\ H_{\rm T} & - H_{298,16} &= 57.90\,T \,-\, 17,672; \,\,(0.1\%;\,\,1785{-}1810^\circ{\rm K.}) \\ \hline & (6)\,\,{\rm K.\,K.\, Kelley,\,\,U.\,S.\,\,Bur.\,\,Mines\,\,Bulletin\,\,476\,\,(1949).} \end{array}$

BERKELEY 4, CALIFORNIA

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING AND RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA, BERKELEY]

The Heat and Entropy of Ionization of Hydrofluoric Acid. The Entropy of Bifluoride Ion

BY LOREN G. HEPLER, WILLIAM L. JOLLY AND WENDELL M. LATIMER

Received February 19, 1953

The heats of solution of sodium fluoride in water and in aqueous perchloric acid have been measured. These values are used to calculate the heat of ionization of hydrofluoric acid. By combining this heat with the free energy of ionization, we have calculated the entropy of ionization. We found $\Delta H^0 = -3180$ cal./mole and $\Delta S^0 = -25.2$ e.u. This value is used in calculating the entropy of bifluoride ion which is found to be 26 e.u.

Because of the unusual structure of bifluoride ion, FHF⁻, a value for its entropy in aqueous solution is of considerable interest. This work was undertaken to obtain this value and also to clear up uncertainties in the heat and entropy of ionization of aqueous HF.

The equilibrium constants for the dissociation of hydrofluoric acid and for the formation of $HF_2^$ have been determined by Broene and DeVries.¹ Hence measurement of the heat of solution of sodium fluoride in water and in acid enables one to calculate the heat and entropy of ionization of aqueous hydrofluoric acid and the HF_2^- entropy.

Experimental Procedures

The calorimeter used in this investigation has been described in detail elsewhere.^{3,3} For the runs involving acid solutions, the glass surfaces of the calorimeter were coated with a thin layer of Tygon Paint (Series K, White, U. S. Stoneware). Samples of sodium fluoride were contained in

H. Broene and T. DeVries, THIS JOURNAL, 69, 1644 (1947).
B. J. Fontana, "National Nuclear Energy Series IV-19B,"

 (2) B. J. Fontana, "National Nuclear Energy Series 1V-198," McGraw-Hill Book Co., Inc., New York, N. Y., 1950, p. 321.
(3) H. W. Zimmermann and W. M. Latimer, THIS JOURNAL, 61,

(3) H. W. Zimmermann and W. M. Latimer, THIS JOURNAL, 61, 1550 (1939).

small thin glass bulbs and were introduced into the calorimetric solution by breaking the bulbs against the bottom of the dewar. The sample bulbs were coated with paraffin wax for the runs using acid solutions. All heats were measured at $25 \pm 1^{\circ}$ and are reported in terms of the defined calorie.

C.P. sodium fluoride was dried for two hours at 150° and then stored in a desiccator until used.

Double vacuum-distilled 72% perchloric acid was diluted with distilled water to make a stock solution which was standardized against mercuric oxide. Concentration expressed in moles of acid/liter was converted to molality by using the relation due to Stonehill.⁴

The Heat of Solution of Sodium Fluoride in Water.—One measurement of the heat of solution of sodium fluoride in water was made. The result of this experiment is in agreement with the values obtained by Latimer and Jolly.⁵ The details are given in Table I, where the most recent determination is designated as Run 3.

TABLE I				
Run	NaF, g.	H ₂ O, g.	ΔH , cal./mole	
15	1,063	1064	291	
25	1.759	1042	297	
3	1.598	1 060	290	

(4) H. Stonehill, Trans. Faraday Soc., 36, 76 (1943).

(5) W. M. Latimer and W. L. Jolly, THIS JOURNAL, 75, 1548 (1953). Data from the Bureau of Standards⁶ compilation have been employed to correct these heats to infinite dilution. We obtain $\Delta H^{\circ} = 213 \pm 10$ cal./mole. The Heat of Solution of Sodium Fluoride in Perchloric

The Heat of Solution of Sodium Fluoride in Perchloric Acid Solution.—Three measurements of the heat of solution of sodium fluoride in perchloric acid were made. In each experiment the initial perchloric acid concentration was such as to ensure the presence of an excess of acid after the addition of the sodium fluoride. The results of these experiments are presented in Table II.

TABLE II

Run	NaF, g.	H2O, g.	HClO ₄ mole	$Q_{(1)}$, cal.
4	2.4098	1027	0.08255	-185.50
5	2.3122	1025	.08255	-182.86
6	2.5477	1024	.08255	-200.58

Calculations

The calorimetric reaction is considered to be

(a + b + c)NaF(s) + (a + c/2)H⁺ = (a + b + c)Na⁺ + aHF + bF⁻ + c/2HF₂⁻ (1)

where a represents the moles of HF, b the moles of F^- , and c/2 the moles of HF_2^- formed in the reaction. The coefficients a, b and c may be calculated using the equilibrium constants of Broene and DeVries,¹ since the initial acid concentration and the total fluoride added are known quantities. To reaction (1) we will add reactions (2) and (3), thus obtaining (4).

$$bF^- + bH^+ = bHF \tag{2}$$

$$c/2HF_2^- + c/2H^+ = cHF$$
 (3)

$$(a+b+c)\mathbf{N}\mathbf{a}\mathbf{F}(\mathbf{s}) + (a+b+c)\mathbf{H}^+ = (a+b+c)\mathbf{N}\mathbf{a}^+ + (a+b+c)\mathbf{H}\mathbf{F}^- (4)$$

It is seen that $Q_{(1)} + Q_{(2)} + Q_{(3)} = Q_{(4)}$. As a first approximation, we take $Q_{(2)} = -3003b$ calories and $Q_{(3)} = -1050c$ calories.⁷ Finally, the heat for the reaction

$$NaF(s) + H^{+} = Na^{+} + HF$$
 (5)

(6) National Bureau of Standards, Circular 500 (Feb., 1952), "Selected Values of Chemical Thermodynamic Properties."

(7) These heats have been calculated from the temperature coefficients of the equilibrium constants, given in reference (1).

was calculated from $\Delta H_{(b)} = -Q_{(4)}/(a + b + c)$ cal./mole. This value for the heat was then used for another, final, approximation. An exact knowledge of $Q_{(2)}$ and $Q_{(3)}$ is not critical for the calculation of $Q_{(4)}$ as the correction introduced by $Q_{(2)}$ is of the order of 1-2% of $Q_{(1)}$ while the correction introduced by $Q_{(3)}$ is of the order of 0.1% of $Q_{(1)}$.

The heats of dilution of sodium perchlorate and perchloric acid for the solutions in runs 4, 5 and 6 may be estimated from Bureau of Standards data.⁶ The heats of dilution are found to be of the same magnitude but of opposite sign. Hence we take $\Delta H_{(5)}$ as the heat of this reaction at infinite dilution.

The heat of ionization may now be computed as the difference between $\Delta H_{(5)}$ and the heat of solution of sodium fluoride in water. The heats calculated are recorded in Table III.

Table III

THE HEAT OF IONIZATION OF HYDROFLUORIC ACID

Run	ΔH_{\star} cal./mole	
4	-3110 ± 60	
5	-3187 ± 15	
6	-3189 ± 20	

The uncertainties in ΔH recorded in Table III have been estimated from our calorimetric temperature drift uncertainties. We shall take -3180 \pm 15 cal./mole as the best value for the heat of ionization of hydrofluoric acid. We combine this value with the free energy of ionization to calculate $\Delta S^0 = -25.2$ e.u. If the partial molal entropy of fluoride ion is taken as -2.3, the entropy of HF_{aq} is seen to be 22.9 e.u. The above value for the entropy of HF may be combined with the value for the entropy change for the reaction HF + F⁻ = HF₂⁻, calculated from the data of Broene and De-Vries¹ to give the partial molal entropy of HF₂⁻ ion as 26 e.u.

BERKELEY 4, CALIFORNIA